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We consider a heteroscedastic linear regression model with normally

distributed errors in which the variances depend on an exogenous variable.

Suppose that the variance function can be parameterized as *(z,O) with 0

unknown. If 6 is any root-N consistent estimate of 0 based on squared residuals,

it is well known that the resulting generalized (weighted) least squares estimate

A
with estimated weights has the same limit distribution as if 0 were known. The

-2/ j I,

covariance of this estimate can be expanded to terms of order N 2 . If the

variance function is unknown but smooth, the problem is adaptable, i.e., one can

estimate the variance function nonparametrically in such a way that the resulting

generalized least squares estimate has the same first order normal limit

distribution as if 3he variance function were completely specified. -n a special

case wd computeian expansion for the covariance in this semiparametric context,

and f4nd-t4ha the rate of convergence isslower for this estimate than for its

parametric counterpart. More importantly, x.-44.d--vA.there is an effect due to

how well one estimates the variance function. a kernel regression

estimatoral-- he the optimal bandwidth in *us problem is of the usual

order, but t1haq the constant depends on the variance function as well as the

particular linear combination being estimated. 6

* M
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SECTION 1 Introduction

We consider a heteroscedastic linear regression model with normally
S

distributed errors and replication :

yi= xit + aItij (i=1..... N ;j = 1.2);

2
(1.1) i = (zie)

E(Tij) = 0 ; Variance(ili) = 2.

In this model, the regression parameter is 6, and the variance function is 4.

The {zi} are scalars, possibly a component of the p-dimensional vectors {xi}.

Throughout, we will assume that the (xi,zi} are independent and identically

distributed random variables mutually independent of the {ij}. The errors (qij }

are assumed to be independent normally distributed random variables. The reason

that the variance of ij equals 2 will become clear later.

Let 0 be the mle of 6. The mle Pw of P Is a generalized least squares

estimate, i.e., weighted least squares with the estimated weights /41(zi.O). Let
-lN

(1.2) SN = N . xI xit / (ziO) -- S (positive definite),
i=1

then it is well known that ww is asymptotically normally distributed with mean 1

and covariance S-1/N, i.e., with ":Y' denoting convergence in distribution,

(1.3) N12 Normal(OS

The limit distribution (1.3) is the same as if 0 were known, so that (1.3)

expresses a parametric adaptation result.

A simplification of an argument of Rothenberg (1984) shows that 1w is

A1 "I
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symmetrically distributed about 1 with a covariance expansion

(1.4) Covariance N(1w- ) = S-1 + N-1 A + o(N-l)

where Aw is a positive definite matrix. Such second order covariance expansionsVq
when the variances depend on the mean and/or the errors are not normally

distributed have been investigated by Carroll, Wu & Ruppert (1987).

Suppose that instead of a parametric model, the form of the variance

function is not known a priori, so that we can write

(1.5) ai2 = p(zi) = 1 / g(zi). unknown.

Now the unknown parameters are (1,4), so we are in a semiparametric context, see

Bickel (1982) and Begun, et al. (1983). It is easy to show that the i

semiparametric information bound here is the same as if 4, were known. Carroll

(1982), Robinson (1986) and Carroll, Ruppert & Stefanski (1987) have constructed

adaptive estimates as follows. By smoothing techniques such as kernel or nearest

neighbor regression, they form an estimate 4 of 4,, and then construct the

generalized least squares estimate 13 of 1 with the estimated weights 1/4i(zi).
g

These estimates have the same limit distribution as if 4 were known, i.e.,

N1/2(13 - ) * Nomal(OS - )gI

If 4 is chosen appropriately. 13 is symmetrically distributed about 1. In this

paper, we pick a particular estimate 4 based on kernel regression techniques and

compute an analogue to the covariance expansion (1.4), namely

1/ 1 -1 -4/15 -1
Covarlance [N( 1 3g - j S + N-A + o(N ).

! p -,,.,. y -,- .,,;vj v.,;,t ,; , ..,,.,il'eO ,. , # .,' ,,, lt %.,~ct :M~m,.,,, .;,,, ',% '¢ 1, ', ',,sI,% R
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There are two major conclusions. The first is that the second order covariance S
expansion converges at a slower rate for the semiparametric model (I.L) than it

does for the parametric model (1.1). Of more general interest is that the

optimal bandwidth for estimating any linear combination of the regression

parameter P is still of the usual order, but it depends not only on the variance

function but also on the particular linear combination being estimated.

In a sense the context we are working in is narrow, but there are some

general implications to our results. In the semiparametric context, there is

some concern that much larger sample sizes than usual will be needed to achieve

approximate normality than is true in a parametric model. Hsieh & Manski (1987)

state "It is sometimes asserted that satisfactory nonparametric estimation of

score functions requires very large samples; hence, adaptive estimates should

perform poorly in moderate size samples".

Our results indicate that semiparametric adaptive estimates should indeed

converge more slowly than do parametric estimates, which is not too surprising a

result but is at least worth nailing down. With considerable fine tuning of

their estimate of the nonparametric part of their model, Hsieh & Manski are able

to do fairly well in their two-sample problem. It is clear from their

simulations that how well one estimates the nonparametric part of their

semiparametric model can affect the small sample properties of the parametric

estimator. Our results are a theoretical complement to their simulations. How N

well one estimates the semiparametric nuisance function q can affect the small

sample performance of the parametric estimates.
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SECTION 2 : A Second Order Covariance Expansion

The key to our consrruction is that replication in a normally distributed

context allows us to do weighted least squares with estimated weights which are

distributed independently of the "data". Let

e = (71il + Tli2)/ 2  ; 61 = ei +1/2(z i)

ei* = (Yil - Yi2 )/ 2 = *1/2(zi) (TII - '72)/ 2

Note that the sequence {e, ) is observable. Because the i ij} are normally

distributed, the sequences {5} and (e,} are mutually independent and

identically distributed standard normal random variables. Also, the {e1} are

distributed independently of the {ei}. Since

E{ a,*2 ) = P(zi) I
2L

it is plausible to base estimates of the weights on the {e 2}. Of course, this

will not be the most efficient way to estimate the variance function %P, but will

still allow us to estimate 13 efficiently to first order. We first write the

results in terms of g(z) = I/ P(z). see (1.5). Let gN be an estimate of g which

is based solely on the {i*}. Make the following definitions

YNz) gN~(z) - (z)

-N x 1 N t
SN N 1 xixi g(zi) SN = N I x

i=l i=1

x 1 R N N x-.
x1 g(z)R = N 1 x16 zi)

M=N - N RN R N



LEMMA 1: For any N.

cov 1/(P9g P)] SN1 + E[TN TNt]

PROOF OF LEMMA 1 :Note that

-T)N{T}O

the latter following easily since g is independent of the {6i}. Since the

distribution of TN does not depend on P3 and P13 is a complete sufficient statistic

for 1.by Basu's Lemma TN is independent of P3. This means that

Cov[N /(P3~3 ] P) Cov[N1/ 1/(1U ] +Cov[ TNi
-N + E[TN TNt ]3

Because TN Tt is positive (semi) definite, Lemma 1 implies that estimating

weights by our method results In an inflation in variance. Define

CN=TN TN (QNMNN) (QN MNN)

We show in the appendix that under reasonable regularity conditions. CN=o (N1)

Thus, it is not too Implausible to assume that

(2.1) N E[ r] 0 as N-w

THEOREM I Assume (2.1). Then -

(2.2) Coy [ N 1 (P3 13)]
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SN +SN[E{QNQN)E{MNSN - + o(N

The proof is in the appendix. 0

The translation from gN(Z) - g(z) in the definition of ON and MN is to note that

(2.3) ~gN(z) - g(z,) 'P [ N(z)- ')j/4(z

We will ignore the error in (2.3) by subsuming it under "additional regularity

conditions". Define
t 2

vi =X xi xi  (z i ) ;>'

1 N

A -N I v lNZ) - *(z 1 2 z)i=1

-lN 1
BN =N1 I X I [ 4 N~z) 'P(z) 2 4 (Z)

The direct translation from (2.2) is

(2.4) Coy N

SN-1 + SN 1 E{ AN} -E{ BS , Nt }]SN-1 + oN-1)..'

In the next section we compute (2.4) in a special case. -.v

J
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SECTION 3 An Example

The purpose of this section is to get an explicit expression for the

covariance expansion (2.4) in a special case. The major question is whether the

second term on the right hand side is of order O(N- ) as it would be in the

parametric case. We use a kernel regression estimator. Let K(.) be a symmetric

density with bounded support and let f(-) be the marginal density of the {zi).

Let b = bN -- 0 be the bandwidth and define

Kb(u) = b K(u/b) ;

[K] = K K(u) du . N.

The estimator we will use is a leave-one-out type estimator, which Robinson

(1986) has also found to be convenient analytically:

N 2N
(zi) K K . zJPN~ i w Kb(Zj -z i )  1 Kb j.(z -i ).

yi i

We will also need the following :

6
(3.1) N bN ---- +0 g.

(3.2) f v 1(2(v) dv 0.

(3.3) If P is the jth derivative of * and fl is the first derivative of f. then

cl(v) = (1/2) d(v) [K], where

d(v) = N2 (v) + 2fl(v)4'l(v)/f(v). -.

Define the following terms :

( =) f dv t(v) E 2 'P(v))2  z=v
{K2(4) -



c(1 2I) c 4 v f(v)

d= SN 1 E k ~c2( Z)4 I-3(z)]SN-l ;d 2 =
5 N E 1t c2z'P-3zW1S Nl

T = SN' E[Xxtc,(z) I,2(z)]SNl ; S E E[XX t /(z)] (see (1.2))

d3 = d -T T t 0 (by Cauchy Schwarz).
3 2

THEOREK 2 Assume (2.4). Then, for estimating any linear combination a ( 3.

(3.4) Coy [N1/2 (at ~- a tj3)]

at [Si -1 4 a ~ NN-1)
a + (Nb N) d 1 + b N d3] a N ~~+~~

From (3.4). the optimal bandwidth is cN1 5  where

(3.5) c =[q atd 1a ]1/ [ 4 at d 3 a ]1 .5

Note how the optimal bandwidth depends on the design and which linear combination .

you are Interested in estimating.

Remark :Assume the result of Lemma 1, we could generalize (3.4) and (3.5)

somewhat by allowing the zIto be q-vpctors. The changes needed are these:

K.D(u) b bK(u/b); [K uutK(u)du 5

Cl(v) =(1/2) trace(d(v) [K]). where

d(v) = 'P2(v) + (q,1(v)fl(v)t + f1(v)'p1(v) t)/f(v) 5,

The optimal bandwidth is cN 1 / (4+q) and (3.4) and (3.5) become

(3.4)* Coy N ]a1 aq

. ~ ~~~ ' i. * V 4 m 5
g-NA.?.V~'V-'S
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a [S-i d + b 4 d3] a + ob + (Nb)N

(3.5)* C = [q atdIa ](4+q) 4 at d3 a
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Without loss of generality, we may set SN= I.

LEMMA A.1 : Assume that
(A.1) -N l3 = Op(N - I

(A.2) 11 QN 11 -P- o,

(A.3) , 11Q o p =O(N - 1)

Then,

TN TNt = (QN MN RN) (QN NRN)t + °p ( N - )

PROOF OF LE1MA A.1 We have that

Sl - N' -MN + MNM +0O( 11MN1

Thus,

TN =SN R NSN R N =(SN SN )R N +SN (R N -RN)

A% 1 l ~ - -1)Q %-1

=(SN - SN- )RN + (SN - SN + SN

[-MN + MN MN ] N + [-MN + MN MN ]QN + SN-I QN + Op(N - )

=SN-1 QN - MN RN + MNMN N MN QN + op(N '

the last following from (A.1) - (A.3). From (A.1) - (A.3), we have

TN TNt SN I QNQNt SN 1 MN RN QNt SN-I

_ MN RN QNt SN 1 ]t+ MN RN RNt MN + op(N- ) "

Since SN =I, the proof is complete. 0



LEMM A.2 Define

v i  i x i / g =zi )  xi xit O(zi).

Then,

E[ =N QNt ] =N E[ v, {gF(zi) - g(zi) 2  13

PROOF OF LEMMA A.2 Since

N N t

QNQNt =N I 6 1 xix { g(Zi) - g(z1 )} { -(zj) - g(z)}
i=1 J=I

and since gN and the (6} are independent, we find that

E QN QNt I gN' {xifz 1 } ]I v i NCzi)2 gzi)l

This completes the proof. I]

LEMMA A.3 : We have that

E[(QN -MN RN) (% MRN) t =E QN QN t] ~E[MMNt I k

PROOF OF LEKA A.3 Exploiting the independence of gN and the {5i}, as well as V.

remembering that SN = I. we see that

EMN % N M~ E[ MN MNt

It thus suffices to show that

E[MN RN QNt I gN , xizi} ]- MN % t

.1'
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This is routine. [

PROOF OF THEOREM 1 The proof follows from the previous Lemmas. 13

APPENDIX B

Our calculations rely on the following result due to Collomb (1977. 1981).

PROPOSITION B :Let K be a symmetric q-dimensional density. Let (X,Y) C

where X is a q-vector. Define m(x) = E[y IX=x ] and let f(x) be the marginal

density of X. Assume that m(x) and f(x) are four times continuously

differentiable. Define

K ,(u) =- bq K(u/b)

N N
M.0(u) = 1 Y1I K ,(X-X1) / .1 Kb,(x-X1)

v(x) =E[ {Y - m~x)l 2 IX.])
[K] = J u u t K(u) du

b(x) = (1/2)m2(x) + (1/2)[ml(x)flt(x) + fl(x)mlt(x))/f(x).

Then, as b -- + 0.

2, 4Em.0(x) - m(x) = b2 trace(b(x) [K]) + O(b)

Var{%b(x)} = vob)- v(x) J K((u du / f(x) + O(N- lb~+)

LEMMA B.1 :Under regularity conditions (Proposition B) on P, and K,

(B.1) S(zi) = E[ 'N~zi) I ]
= 4(zi) + b N2 cl(zi) + 0OP(b N 4

PROOF OF LEMMA B.1 :Immediate from Proposition B.
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LEMMA B.2 If s(z.) is defined in (B.1), we have

[ ljI(zi) - s(zi) ]

c C 2 Z)/{Nb q) + 0 (N- 1 -
2(i n p N'

PROOF OF LEMA B.2 :From Proposition B with Y = aim X z1 . = i(x) r

LEM14A B. 3 :We have

[4N(zi) - zi~i)

C 2zi/(bNq)+ b n4 C 2 (zi) + 0Op(bN6 +N-1N(2q

PROOF OF LEMMA B.3 The expansion in question is

E 2 1 z + [s(zi) - O(zi)J

-c2 (zi)/{NbN} + b n4 c, 2(z,) + Op (N1 1bN 2 -q) + 0 O(bN 6)1

Now assume without loss that SN =I. Define

W i = X~ X it p43 (zi) ; D i= #(zi) W

LEMMA B.4 As N -

(B.2 r 1 N 21
(B.2 E IN I W i ['PN(zi) - 4i(zd]

1=1

=d I/{Nbq)}+ b 4 d 2 + ONb
6 +N'-1bN (2-q))
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PROOF OF LEMMA B.4 :Apply Lemma B.3 after conditioning on (xilzi).

Lemma B.4 gives us the form of E{AN} in (2.4). anid in order to complete the

calculation we note that "N = B1+ RN2 ' where

-1N
-N N 1  D Di [4iN(zi) - s(zi)]

i=1

It is easy to see by conditioning that

E{RNl BN2) = 0

LEMMA B.5 :As N -

PRF OF LEMAB.5 :Let c. =E{% 2 ). Now,

C b N 2T +O(bN)4

By (3.1) and (B.1).

E{ BN, BN2t} = E [ [BN2 -c IBN2 - cM] t ] + c~ C Mt

CMC*t+ o(N1  N4Tt + o(N b~q+ b4 )n 4

Ic cit
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It is the calculation of the second moment matrix for B N1 that causes the most

difficulties. Write D(z.) =Di.

LEMMA B.6 :As N -

E{ BN, B Nt) N1I E[ ji4(z) D(z) D(z)t]

-N1 E[ D(z) 'P(z) J E[ D(z) P'(z) ]t + o(N1') = 0(N1')

PROOF OF LEMMA B.6 BlIs the average of mean zero but not independent random

variables. By Lemma B.2, we have

E{ BN, BNlt } =N- . E EDiD f . + o(N )

where f I 'N(zi) -s(zi)

By a direct calculation.

(B.3) E{ f Ij E i Z~

=( -)
2 N N

(N-1 m. j LDCEN[(i.k) -s(z,)] [K N(i'm) - (zj)] Izi'zk].

where DN(i.k) =k 2. K{(z.k-z4/bN} / bN fZ(z,)}

S(zi) E DCNi.k) Izi
If (ij.k.m) are all distinct. the expectation is zero. There is only one case

that (k~j) pe (im). and its contribution is of order N . which is too small to

matter. There are (N-2) terms in which k=m~ei, k=m;4j. i~j. Thus, (B.3) is

NlIf [14 (v) K((v-zi)/bN) K{(v-z j)/b NJ Yzv)1

X[ bN2 fZ(zi) fz(zj) ] dv - N -1 P{zi),Ps(zj) + op(N-1)
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-
1[H(ziz3) - 4(zi)4,(zi) + o p N-,.

We thus see that

E{ BN, BN, t N- E[ D(z1) D(z) { HN(Zi'zj) - 4(zi) 'P(zj) ]+ o(N1 )I

To complete the proof we have to show that

(B.4) E[D(z1 ) D(z i) H N(zf'zj)] 0(i).

Taking into account the form of H we find that (B.4) equals

*f fJ b~ D(z1 ) D(z) 114(v) K{(v-z1 )) K{(v-z )}fZ(v) dv dz1 dz~
CU
d~4 _4

JJJ1 (v) K(w1) K(w D bNwi) Dv+bNwj) fZ(v) Dv+v+dw, dwj dv

j f I4(v) D(v) D(v) fZ(v) dv + 0(bN2)
C-

completing the proof. 13

- . -NTciCrESAIRCH (AFSC)
:_7pTIC

I~ ~~~~~ iSlrdI)OQiif

-.V Al%~


